Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation.

نویسندگان

  • M Maalouf
  • P G Sullivan
  • L Davis
  • D Y Kim
  • J M Rho
چکیده

Dietary protocols that increase serum levels of ketones, such as calorie restriction and the ketogenic diet, offer robust protection against a multitude of acute and chronic neurological diseases. The underlying mechanisms, however, remain unclear. Previous studies have suggested that the ketogenic diet may reduce free radical levels in the brain. Thus, one possibility is that ketones may mediate neuroprotection through antioxidant activity. In the present study, we examined the effects of the ketones beta-hydroxybutyrate and acetoacetate on acutely dissociated rat neocortical neurons subjected to glutamate excitotoxicity using cellular electrophysiological and single-cell fluorescence imaging techniques. Further, we explored the effects of ketones on acutely isolated mitochondria exposed to high levels of calcium. A combination of beta-hydroxybutyrate and acetoacetate (1 mM each) decreased neuronal death and prevented changes in neuronal membrane properties induced by 10 microM glutamate. Ketones also significantly decreased mitochondrial production of reactive oxygen species and the associated excitotoxic changes by increasing NADH oxidation in the mitochondrial respiratory chain, but did not affect levels of the endogenous antioxidant glutathione. In conclusion, we demonstrate that ketones reduce glutamate-induced free radical formation by increasing the NAD+/NADH ratio and enhancing mitochondrial respiration in neocortical neurons. This mechanism may, in part, contribute to the neuroprotective activity of ketones by restoring normal bioenergetic function in the face of oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-Lactate-Mediated Neuroprotection against Glutamate-Induced Excitotoxicity Requires ARALAR/AGC1.

UNLABELLED ARALAR/AGC1/Slc25a12, the aspartate-glutamate carrier from brain mitochondria, is the regulatory step in the malate-aspartate NADH shuttle, MAS. MAS is used to oxidize cytosolic NADH in mitochondria, a process required to maintain oxidative glucose utilization. The role of ARALAR was analyzed in two paradigms of glutamate-induced excitotoxicity in cortical neurons: glucose deprivatio...

متن کامل

Excitotoxins, Mitochondrial and Redox Disturbances in Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). There is increasing evidence that MS is not only characterized by immune mediated inflammatory reactions, but also by neurodegenerative processes. There is cumulating evidence that neurodegenerative processes, for example mitochondrial dysfunction, oxidative stress, and glutamate (Glu) excitotoxicity,...

متن کامل

Production of Reactive Oxygen Species by Mitochondria

The mitochondrial respiratory chain is a major source of reactive oxygen species (ROS) under pathological conditions including myocardial ischemia and reperfusion. Limitation of electron transport by the inhibitor rotenone immediately before ischemia decreases the production of ROS in cardiac myocytes and reduces damage to mitochondria. We asked if ROS generation by intact mitochondria during t...

متن کامل

Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate.

Increasing evidence suggests that glutamate neurotoxicity is partly mediated by reactive oxygen species, formed as a consequence of several processes, including arachidonic acid metabolism and nitric oxide production. Here we used an oxidation-sensitive indicator, dihydrorhodamine 123, in combination with confocal microscopy, to examine the hypothesis that electron transport by neuronal mitocho...

متن کامل

Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.

Using the fluorescent dye 2',7'-dichlorodihydrofluorescein (DCF-H2) we investigated the role of glutamate in the production of reactive oxygen species (ROS) in cultured neurons from fetal rat forebrain. The addition of an excitotoxic concentration of glutamate (100 microM) produced a generalized decrease in cellular DCF fluorescence accompanied by local areas of increased fluorescence around th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience

دوره 145 1  شماره 

صفحات  -

تاریخ انتشار 2007